KMA254 Past Exams. Question 1 (2010 Backwards) 2010

1. Find the general solutions to the following first-order ODEs:

(a)
$$\frac{dy}{dx} = \sqrt{1 + y^2}$$

[HINT: It may be helpful to use $\int \frac{dy}{\sqrt{1+y^2}} = \operatorname{arcsinh}(y)$.]

(b)
$$\frac{dy}{dx} + 3y = e^{-5x}$$
 [6 points]

(c)
$$\frac{dy}{dx} = \left(\frac{y}{x}\right) - \frac{1}{3}\left(\frac{y}{x}\right)^4$$
 [6 points]
[8 points]

2009

- 1. Find the general solutions to the following first-order ODEs:
 - (a) $\frac{dy}{dx} + 2y = e^{-2x}$ [6 points] (b) $\frac{dy}{dx} = 1 - y^2$ [HINT: It may be helpful to use $\frac{1}{1 - y^2} = \frac{1}{2} \left(\frac{1}{1 - y} + \frac{1}{1 + y} \right)$.] (c) $\frac{dy}{dx} + y = xy^2$ [7 points]

[HINT: It may help to use $\int xe^{-x}dx = -(x+1)e^{-x}$.]

[7 points]

2008

1. Find the general solutions to the following first-order ODEs:

(a)
$$\frac{dy}{dx} = \frac{y}{x^2}$$
 [6 points]
(b) $\frac{dy}{dx} + 2xy = x^3$ [7 points]
[HINT: It may help to use $\int x^3 e^{x^2} dx = \frac{1}{2} (x^2 - 1) e^{x^2}$.]
(c) $\frac{dy}{dx} = -\frac{(y+x)^2}{(y+x)^2 + 1}$ [7 points]
(c) $\frac{dy}{dx} = -\frac{(y+x)^2}{(y+x)^2 + 1}$ [7 points]
[7 points]
[7 points]
2007
1. Find the general solutions to the following first-order ODEs:
(a) $\frac{dy}{dx} = xy^2$ [5 points]
(b) $\frac{dy}{dx} + 2y = 5\sin x$

[HINT: It may help to use $\int e^{2x} \sin x \, dx = \frac{1}{5} e^{2x} (2 \sin x - \cos x)$.]

(c)
$$\frac{dy}{dx} + \frac{1}{x}y = xy^2$$
 [8 points]

2006

1.

1. Find the general solutions to the following first-order ODEs:

(a)
$$\frac{dy}{dx} = \frac{1+x}{\cos y}$$
 [6 points]
(b) $\frac{dy}{dt} + 3y = \cos t$

[HINT: It may help to use $\int e^{3t} \cos t dt = \frac{1}{10} e^{3t} (3\cos t + \sin t)$.]

[6 points]

[7 points]

(c)
$$\frac{dy}{dx} = \left(\frac{y}{x}\right)^2 + 3\left(\frac{y}{x}\right) + 1$$
 [8 points]

2005

1. Find the general solutions to the following first-order ODEs:

(a)
$$\frac{dy}{dx} + 2y = 6e^{-4x}$$
[6 points]
(b)
$$\frac{dy}{dx} = ky(1-y)$$
[7 points]
(c)
$$\frac{dy}{dx} = \frac{y}{x} + \frac{x}{y}$$
[7 points]

2004

1. Find the general solutions to the following first-order ODEs:

(a)
$$x \frac{dy}{dx} + y = x$$
 [4 points]
(b) $\frac{dy}{dx} = (y+4x)^2$
[HINT: Put $u = y + 4x$. It may help to use $\int \frac{du}{u^2 + a^2} = \frac{1}{a} \arctan\left(\frac{u}{a}\right)$.]
[8 points]
(c) $\frac{dy}{dx} + y = -xy^{-1}$ [8 points]

2003

1. Find the general solutions to the following first-order ODEs:

(a)
$$\sin t \frac{dy}{dt} = y \cos t$$
 [5 points]
(b) $xy \frac{dy}{dx} = 2y^2 + 4x^2$ [7 points]
(c) $\frac{dy}{dx} = \left(\frac{y}{x}\right)^2 + 3\left(\frac{y}{x}\right) + 1$ [8 points]

2002

1. Find the general solutions to the following first-order ODEs:

(a)
$$x^{3} \frac{dy}{dx} + 3x^{2}y = \frac{1}{x}$$
 [5 points]
(b) $x \frac{dy}{dx} = (y - x)^{3} + y$
[HINT: It may help to make the change of variables $v = y/x$.]
(c) $\frac{dy}{dx} + xy = xy^{-1}$ [8 points]